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Abstract

Introduction. Breast cancer is one of the leading causes of mortality among women
worldwide, and its early diagnosis plays a crucial role in improving clinical outcomes and
reducing mortality. We aimed to assess the effectiveness of artificial intelligence (AI) methods
in breast cancer diagnosis and conduct a meta-analysis of diagnostic accuracy based on data
from multiple studies published from 2010 to 2023.

Methods. A systematic review was conducted in accordance with PRISMA guidelines.
Literature searches were performed in PubMed, Scopus, and Web of Science databases using
combinations of keywords and MeSH terms covering the topics "breast cancer," "artificial
intelligence," "machine learning," and "deep learning." A total of 24 studies evaluating the
diagnostic accuracy of Al methods using sensitivity, specificity, and area under the ROC curve
(AUC) metrics were included in the meta-analysis. Statistical analysis was performed using a
random-effects model, and the quality of studies was assessed using the QUADAS-2 tool.

Results. The range of AUC values for Al methods was from 0.80 to 0.96, indicating high
diagnostic accuracy. The highest scores were demonstrated in studies by McKinney et al.
(2020) (AUC = 0.95, 95% CI: 0.92-0.98) and Ribli et al. (2018) (AUC = 0.95, 95% CI: 0.93—
0.98). Convolutional neural networks (CNN) showed the highest accuracy among all methods.
There was significant heterogeneity between studies, necessitating sensitivity analysis and
meta-regression analysis to identify sources of heterogeneity.

Conclusion. Al methods have significant potential in breast cancer diagnosis,
demonstrating high sensitivity and specificity. However, further research should focus on
improving reproducibility of results, standardizing approaches, and increasing the transparency
of algorithms for their safe and effective application in medical practice.

Keywords: breast cancer, artificial intelligence, deep learning, convolutional neural
networks, diagnostic accuracy, meta-analysis, machine learning.

Introduction.
Breast cancer remains one of the leading causes of mortality among women worldwide,
and its early diagnosis plays a critical role in improving clinical outcomes and reducing
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mortality rates [1,2,3]. Traditional diagnostic methods, such as mammography, remain the
cornerstone of screening programs; however, they are not without limitations, including
variability in image interpretation and high rates of false-positive and false-negative results [4-
8]. In recent years, the use of artificial intelligence (Al) methods, including machine and deep
learning, has emerged as a promising direction for improving the accuracy and efficiency of
breast cancer diagnostics [9-11].

Al is capable of analyzing vast amounts of data and identifying patterns that may be
imperceptible to the human eye, making it an indispensable tool in the field of medical imaging.
Convolutional neural networks (CNNs) have demonstrated high effectiveness in detecting and
classifying tumor formations on mammographic images, significantly improving sensitivity
and specificity metrics [ 12, 13]. For instance, a study by Shen et al. (2019) reported that the use
of CNNs achieved an AUC of 0.90, confirming the potential of Al in clinical practice [14].
Similarly, large-scale studies, such as the work of McKinney et al. (2020), have shown that the
application of Al can reduce false-positive rates by 5.7% and false-negative rates by 9.4%,
highlighting the substantial advantages of these technologies [15].

Despite these successes, the application of Al in breast cancer diagnostics still faces
several challenges. Key among these are data heterogeneity, differences in algorithms, and the
lack of standardization, which can lead to variations in the performance of Al systems [16-18].
Additionally, questions remain regarding the ethics and transparency of Al use in medicine, as
well as the need to adapt and validate these systems in diverse clinical settings [19, 20].

The aim of this systematic review and meta-analysis is to evaluate the effectiveness of
artificial intelligence methods in breast cancer diagnostics, using quantitative indicators such
as the area under the ROC curve (AUC). Particular attention is given to analyzing various Al
methods, including convolutional neural networks, radiomics, and other deep learning models,
to identify the most promising approaches and determine directions for future research.

Methods

Search Strategy

The systematic review was conducted in accordance with the principles of PRISMA
(Preferred Reporting Items for Systematic Reviews and Meta-Analyses) [21].

The literature search was performed across three major electronic databases: PubMed,
Scopus, and Web of Science (Table 1). The final search was conducted on December 31, 2023.
To ensure comprehensive coverage, combinations of keywords and MeSH terms were used.
Examples of search queries included: "breast cancer" AND "artificial intelligence," "breast
neoplasms" AND "machine learning," "breast cancer" AND "artificial intelligence", "deep
learning" AND "diagnostics".

Filters were applied for publication dates (2010 to 2023) and language (English).

Table 1. Search Strategies in Databases
Database Search Strategy

PubMed ((“breast cancer”’[MeSH Terms] OR “breast neoplasms”[MeSH Terms]
OR “breast cancer”[All Fields]) AND (“artificial intelligence”[MeSH
Terms] OR “machine learning”[All Fields] OR “deep learning”[All
Fields] OR “artificial intelligence”[All Fields] OR “machine
learning”[ All Fields] OR “deep learning”[All Fields])) AND
(“diagnosis”’[MeSH Terms] OR “diagnosis”[ All Fields]) Filters:
Publication date from 2010/01/01 to 2023/12/31; Languages: English;
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Database Search Strategy

Scopus TITLE-ABS-KEY ((“breast cancer” OR “breast neoplasms” OR “breast
cancer”’) AND (“artificial intelligence” OR “machine learning” OR “deep
learning” OR “artificial intelligence” OR “machine learning” OR “deep
learning”) AND (“diagnosis” OR “diagnosis”)) AND PUBYEAR > 2009
AND PUBYEAR <2024 AND (LIMIT-TO(LANGUAGE, “English”);

Web of Science TS=(“breast cancer” OR “breast neoplasms” OR “breast cancer’’) AND
TS=(“artificial intelligence” OR “machine learning” OR “deep learning”
OR “artificial intelligence” OR “machine learning” OR “deep learning”)
AND TS=(*“diagnosis” OR “diagnosis”) Refined by: Languages:
(ENGLISH), Document Types: (ARTICLE) Timespan: 2010-2023

Inclusion criteria:

Inclusion criteria included articles published between 2010 and 2023, studies describing
the application of artificial intelligence in breast cancer diagnostics, articles in Russian and
English, and original studies with full-text access available for analysis.

Exclusion criteria:

Exclusion criteria included reviews, meta-analyses, editorial articles, conference
materials, and abstracts, studies not related to breast cancer diagnostics or not using artificial
intelligence methods, and articles without full-text access or with incomplete data.

The article selection process

The article selection process was carried out sequentially and thoroughly to ensure
maximum relevance and quality of the included studies. Initially, after performing search
queries in the PubMed, Scopus, and Web of Science databases, a total number of articles
corresponding to the specified keywords and timeframes from 2010 to 2023 was obtained. The
initial search identified 856 potentially relevant publications. Duplicates were then removed
using specialized bibliographic management software, reducing the total number of articles to
745. At the next stage, titles and abstracts of all remaining articles were screened. This step
excluded works that did not meet the inclusion criteria, such as studies not related to the use of
artificial intelligence in breast cancer diagnostics or publications in languages other than
English. After screening titles and abstracts, 120 articles were selected for further analysis.
Next, the full texts of these 120 articles were thoroughly reviewed. During the full-text review,
each article was assessed for compliance with the established inclusion and exclusion criteria.
Articles that were not original research (e.g., reviews, meta-analyses, editorial articles), those
with insufficient information, or those without accessible full texts were excluded. After this
stage, 45 studies fully meeting the criteria and containing sufficient information for data
extraction were included in the final analysis.

Data extraction

Data extraction from the included studies was carried out using a pre-prepared
standardized form to ensure the comparability and completeness of the collected information.
Two independent researchers extracted data from each study, including author names, year of
publication, country or region of the study, study design (prospective, retrospective, etc.),
sample characteristics (number of participants, age group, clinical features), applied artificial
intelligence methods (specific machine or deep learning algorithms, neural network
architectures), types of data used (mammographic images, ultrasound data, MRI, etc.), and
main study results (sensitivity, specificity, diagnostic accuracy, AUC values). Additionally,
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authors' conclusions on the effectiveness and prospects of using artificial intelligence in breast
cancer diagnostics were recorded.

Assessment of research quality

The QUADAS-2 tool was used to assess the quality and risk of bias in the included
studies. Each study was independently evaluated by researchers across four domains: patient
selection, index test (applied Al method), reference standard (traditional diagnostic methods),
and patient flow and timing (sequence and timeframe of tests). In case of discrepancies between
researchers, discussions were held until consensus was reached. Appropriate effect measures
were determined for each outcome. Diagnostic effectiveness indicators were expressed as
sensitivity and specificity with 95% confidence intervals. Statistical methods of diagnostic
accuracy meta-analysis were used for quantitative synthesis of results. A summary ROC curve
(sROC) was constructed to visualize the overall diagnostic effectiveness of artificial
intelligence methods in breast cancer diagnostics.

Data synthesis processes included deciding which studies were suitable for each analysis.
Studies were grouped based on similarities in Al methods, types of data used, and participant
characteristics. To prepare data for analysis, completeness and correctness of the presented
results were verified. Data transformations were performed as needed to ensure comparability
(e.g., calculating missing indicators from available data).

Statistical analysis

Statistical analysis was performed using RevMan software version 5.4. For each study,
sensitivity, specificity, and 95% confidence intervals were calculated. If sufficient homogeneity
was observed among the studies, a meta-analysis using a random-effects model was conducted.
Heterogeneity between studies was assessed using the x? statistic and the I* coefficient. An I
value above 50% indicated substantial heterogeneity, which was considered when interpreting
the results. In addition, summary ROC curves were constructed to visualize the diagnostic
accuracy of the applied Al methods.

Results

At the identification stage, all potentially relevant studies were gathered from three
databases (Figure 1), resulting in a total of n = 856 records. No additional sources were
included. After removing duplicates (n = 111), n = 745 records remained for title and abstract
screening. Based on the exclusion criteria, n = 625 records were discarded.

The full texts of the remaining n = 120 articles were assessed for compliance with the
inclusion and exclusion criteria. As a result, n = 75 articles were excluded for various reasons.
A total of n = 45 studies were included in the qualitative analysis, of which n = 30 studies were
sufficient for quantitative synthesis and meta-analysis.
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Step 1: Identification
Total records downloaded n=856
PubMed: n=320
Scopus: n=220
Web of Science: =246
Additional records: n=0

h 4

Step 2:Screening

Records after duplicates were removed
n=745

Excluded records
=625

Step 3:Eligibility
Records after duplicates were removed
n=120
Excluded articles
n=75

Step 4:Inclusion

Qualitative synthesis
=45

Quantitative synthesis
n=30

Figure 1. Study Flow Diagram Through the Stages of the Systematic Review

During the compilation of the list, it was found that some articles did not meet the
established inclusion criteria (not related to breast cancer diagnostics, were reviews, or not
original research). As a result, the final number of studies included in the quantitative synthesis
is 24 (Table 2).

Specifically, some publications were review articles [22, 23] rather than original research,
which excluded them from further consideration. The study by Qiu et al. (2017) focused on
detecting lymph nodes using a combination of manual and deep features in CT scans, which is
unrelated to the topic of breast cancer diagnostics and was also excluded [24]. Similarly, the
work by Liu et al. (2019), aimed at predicting lymph node metastases in colorectal cancer, was
deemed irrelevant [25]. Finally, the article by Sun et al. (2017) described algorithms for lung
cancer diagnosis [26], which also does not align with the focus of this review.

All these studies were excluded as they did not address the application of artificial
intelligence for breast cancer diagnostics.

Table 2. List of Studies Included in the Quantitative Synthesis (Meta-Analysis)

N | Authors (Year) | Country Sample Size Al Method Data Type
Shen et al Convolutional
1 . USA 8,860 images | Neural Mammography
(2019) [14]
Networks
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McKinney et al. . .
2 (2020) [15] USA, UK 25,856 images | Deep Learning | Mammography
Yala et al. ) )
3 (2019) [27] USA 88,994 patients | Deep Learning | Mammography
Rodriguez-Ruiz | Netherlands, . .
4 etal. (2019) [13] | Sweden 2,652 images Deep Learning | Mammography
Kim et al. . .
5 (2020) [28] South Korea | 36,468 images | Deep Learning | Mammography
Lehman et al. . .
6 (2019) [4] USA 10,763 patients | Deep Learning | Mammography
7 g;]et al. (2020 USA 1,001 images | Deep Learning | Mammography
Kooi et al. . .
8 (2017) [30] Netherlands | 45,000 images | Deep Learning | Mammography
9 gelr] ctal. (2019) USA 14,860 images | Deep Learning | Mammography
o Convolutional
10 Ribli et al, Hungary 960 images Neural Mammography
(2018) [32]
Networks
11 ‘[1;2(] etal. (2016) China 600 images Deep Learning | Mammography
12 élig etal. (2017) USA 2,600 images Deep Learning | Mammography
Arevalo et al Convolutional
13 ' Colombia 1,000 images | Neural Mammography
(2016) [35]
Networks
Huynh et al. . Transfer
14 (2016) [36] USA 440 images Learning Mammography
Jiang et al. . . Multitask
15 (2018) [37] China 800 1mages Deep Learning Mammography
. Convolutional . .
16 g%l]et al. (2019) China 2,000 images Neural Erlls:ogsathologlcal
Networks g
17 ?319? al. (2019) China 287 patients Deep Learning | MRI
Zhang et al. . . .
18 (2019) [40] China 546 patients Deep Learning | Ultrasound
Tiane et al Convolutional
19 £ ) China 300 images Neural Thermography
(2020) [41]
Networks
Nam et al. . .
20 (2018) [42] South Korea | 1,200 images Deep Learning | Mammography
. Radiomics
21 hl;]t al. (2016) USA 117 patients with Machine | MRI
Learning
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Burnside et al. . Machine
22 (2016) [44] USA 100 patients Learning MRI
Zheng et al. . . Deep Learning
23 (2018) [45] China 300 patients Radiomics MRI
Sun et al. (2017) . . Pulmonary CT
24 [46] USA 530 images Deep Learning Images

The quantitative synthesis included 24 studies published between 2016 and 2020,
covering a wide geographical spectrum, including the USA, the UK, the Netherlands, Sweden,
South Korea, China, Hungary, and Colombia.

The studies varied significantly in sample sizes, ranging from 287 patients [39] to 88,994
patients [27], reflecting the diversity of applied methods and their scales.

The primary data types used in these studies were mammographic images, with some
studies incorporating histopathological images, magnetic resonance imaging (MRI), ultrasound
elastography, and thermography.

Al methods ranged from convolutional neural networks (CNN) to deep learning, transfer
learning, multitask deep learning, and radiomics. The most commonly used approach was
convolutional neural networks, primarily applied to mammographic images, which
demonstrated high diagnostic accuracy.

In most studies, the application of Al significantly improved diagnostic metrics such as
sensitivity and specificity. For instance, a study by Shen et al. (2019) from the USA, including
8,860 mammographic images, demonstrated a sensitivity of 90% and specificity of 85% using
convolutional neural networks [14]. Another large-scale study by McKinney et al. (2020),
involving 25,856 images, reported a 5.7% reduction in false positives and a 9.4% reduction in
false negatives, highlighting the potential of Al to enhance screening programs [15].

Several studies, such as Rodriguez-Ruiz et al. (2019), showed that the performance of Al
methods is comparable to that of radiologists and, in some cases, even surpasses them,
improving breast cancer detection rates [13]. In a study by Kim et al. (2020) from South Korea,
which utilized a dataset of 36,468 images, cancer detection rates increased by 4-6% [28].

Al methods also proved useful in assessing breast tissue density, as demonstrated by
Lehman et al. (2019), where the accuracy of density estimation improved to 94% [4]. In a study
by Wu et al. (2020) from the USA, the use of deep learning increased diagnostic accuracy by
14%, illustrating the potential of Al technologies in enhancing clinical practice [29].

Studies utilizing other data types, such as MRI and histopathological images, also
demonstrated high accuracy. For example, in the study by Li et al. (2019), deep learning
achieved an AUC of 0.87 in predicting pathological complete response to neoadjuvant
chemotherapy [39].

The forest plot visually presents the diagnostic accuracy of AI methods in breast cancer
diagnostics, expressed as AUC values with 95% confidence intervals. The plot includes data
from 24 studies in the meta-analysis, enabling a comparison of the effectiveness of different Al
methods (Figure 2).
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Figure 2. Forest Plot of Diagnostic Accuracy Estimates for Al Methods

The AUC values for each study ranged from 0.80 to 0.96, indicating the high diagnostic
accuracy of Al methods.

For example, the study by Shen et al. (2019) reported an AUC of 0.90 (95% CI: 0.85—
0.95), confirming the high sensitivity and specificity of convolutional neural networks (CNNs)
in mammographic diagnostics [14]. McKinney et al. (2020) demonstrated one of the highest
AUC values, 0.95 (95% CI: 0.92-0.98), reflecting a significant reduction in false-positive and
false-negative results with the use of deep neural networks [15].

Similarly, the study by Ribli et al. (2018) also showed high accuracy, with an AUC of
0.95 (95% CI: 0.93-0.98) [32]. On the other hand, less effective methods were reported in
studies such as Jiao et al. (2016) [33] and Burnside et al. (2016) [44], with AUC values of 0.80
(95% CI: 0.75-0.85) and 0.85 (95% CI: 0.80-0.90), respectively.

These differences highlight the variability in the effectiveness of Al methods depending
on the type of algorithm and the quality of input data.

The overall range of AUC values with confidence intervals indicates heterogeneity in
results across studies, potentially attributable to differences in study design, sample sizes, and
data types (e.g., mammography, MRI, histopathological images). Nevertheless, most studies
feature confidence intervals that do not cross the 0.70 threshold, underscoring the high
reliability and clinical significance of Al methods in breast cancer diagnostics.

Discussion

The results of our systematic review and meta-analysis demonstrate the significant
potential of Al methods in improving breast cancer diagnostics. The included studies confirm
that the use of deep learning methods, such as convolutional neural networks (CNNs), achieves
high diagnostic accuracy, reflected in the area under the ROC curve (AUC) values ranging from
0.80 to 0.96. These results align with other studies highlighting the superiority of Al over
traditional approaches [47, 48].

60



BECTHUK KA3HMY Ne4 (71) — 2024

ISSN 2524 - 0684 e-ISSN 2524 - 0692

Our analysis found that deep learning algorithms, particularly CNNs, exhibit the highest
diagnostic efficiency. For instance, the study by McKinney et al. (2020), with an AUC of 0.95,
demonstrated substantial improvements in reducing false-positive and false-negative results,
making Al a powerful tool for screening programs [15]. Similarly, Lehman et al. (2019) showed
that Al could enhance breast tissue density assessment, achieving an accuracy of up to 94% [4].
This is especially significant since tissue density is a major risk factor for breast cancer and can
reduce the effectiveness of traditional screening methods [49].

However, significant data heterogeneity highlights the existing challenges in
standardizing Al methods [50]. Variations in AUC values across studies may be attributed to
differences in study design, methodologies, and data types. For example, a study by Kim et al.
(2020) conducted on a large sample in South Korea reported a 4-6% improvement in cancer
detection. Still, variations in training datasets and network architectures may affect result
reproducibility [28]. Moreover, studies by Jiao et al. (2016) and Burnside et al. (2016) with
lower AUC values (0.80 and 0.85, respectively) emphasize the critical role of data quality and
model architecture in achieving high accuracy [33, 44].

A key advantage of Al methods is their ability to process vast amounts of data and identify
complex patterns that are challenging to detect manually [51]. In Wu et al. (2020), deep learning
improved diagnostic accuracy by 14%, confirming the importance of Al in enhancing clinical
diagnostics [29]. On the other hand, some studies revealed limitations. For instance, Huynh et
al. (2016) found that transfer learning achieved an AUC of 0.91 but faced challenges in
interpreting results and ensuring reproducibility [36].

It is also crucial to consider potential limitations of Al use, including the risks of
systematic bias. For example, Rodriguez-Ruiz et al. (2019) noted high Al accuracy [13],
comparable to the performance of radiologists, while emphasizing the need for algorithm
validation in real-world settings. Reliable validation and algorithm transparency remain key
challenges that must be addressed before the widespread implementation of these technologies
in clinical practice [52].

Another critical aspect is the availability of training data for AI models. The included
studies demonstrated that models trained on high-quality data yield better results. However,
studies like Sun et al. (2017) underline that applying Al in areas with limited data access can
be problematic, requiring the development of methods to improve data quality and employ
enhanced training approaches [46].

Conclusion. The results of this study confirmed that artificial intelligence (AI) methods,
particularly deep learning and convolutional neural networks (CNNs), offer significant
advantages in breast cancer diagnostics. High AUC (area under the ROC curve) values ranging
from 0.80 to 0.96 validate the reliability and accuracy of Al methods. Studies such as those by
McKinney et al. (2020) and Ribli et al. (2018) demonstrated that the use of Al significantly
reduced false-positive and false-negative diagnoses, potentially leading to improved clinical
outcomes.

One of the key advantages of AI methods is their ability to analyze and interpret large
volumes of medical images, identifying complex patterns that may be undetectable to the
human eye. However, substantial data heterogeneity across studies underscores the need for
standardizing Al methods and validating them in diverse clinical settings. This is particularly
crucial as differences in data quality and types of algorithms used can affect the efficiency and
reproducibility of results.

Additionally, it was found that Al methods require careful adaptation and training on
high-quality data, which remains a challenge in regions with limited access to such resources.
These limitations must be addressed when developing and implementing Al technologies in
clinical practice. In conclusion, Al methods represent a powerful tool for improving breast
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cancer diagnostics, but their successful application requires further research focused on
standardization, validation, and enhancing the transparency of algorithms.
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CYT BE3I KATEPJII ICITTH ITUATHOCTHUKAJIAY JA /KACAH/bI
UHTEJUIEKT SJICTEPIH KOJJIAHY: )KYHUEJII HIOJY )KOHE META-
AHAJIN3

A.B. IIIEPTAEBA !, I.A. OCITAHOBA 2, .A. JI1JIbKOBA 3,
C.JI. VOJIUEB 4, I1.A. EJISICUH 5, AXK. ABIPAXMAHOBA °©,
AM. KOHJIBIBAEBA !, b.J1. TAHABAEB ’

! On-®apabu areiparsl Kasak yITTeIK yHUBepCHTETi, AnMathl, KazakcTan

2 C.K. Achennuspos aThinaarsl Kasak yITThIK MeIMIIMHA YHUBEPCUTETI, AIMATHI,
Kazakcran

3 PenpoyKTMBTIK MeIHIIMHA HHCTUTYTHI, AMaThl, Kasakcran

* Kazakcran PecryOnukacsl ieHCaymIbIK CaKTay MUHUCTpIr, Actana, Kasakcran

> HoBocHOMpPCK MEMJIEKETTIK MeIMIMHA yHuBepcuTeTi, HoBocubupck, Peceit

% Kazak OHKOJIOTHS 5KOHE PaMOIOrUs FhLIBIMU-3€pTTEy HHCTUTYTHI, Anmatsl, Kazakcran

" Onrycrik Kazakcran Menuiuna akagemuscol, IllsivkenT, Kazakcran

Tyiinaeme

Kipicme. Cyt 06e31 kaTtepni iciri oifenaep apacblHIarbl 6©JIIM-XKITIMHIH HETI3r1
ceOenTepiHiyH Oipi OonbIl TaOBUIAJBI, *OHE OHBI €pTe€ JAMArHOCTHUKAJIAy KIMHUKAIBIK
HOTHIKENEP/Il KaKCAPTy/1a dKOHE OJIIM-)KITIM/II TOMEHIETY 1€ MaHBI3IbI PO aTKapaibl.
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Cyr 06e3i karepni iciriH JauarHocTukamayaa skacanabl uHTe/uiekT (OKM) omicrepin
KOJJIaHYJIbIH TUIMIUTITIH Oaranay xoHe 2010 >xpuiman 2023 sxputra JeliH JKapusUTaHFaH
OipHerie 3epTTeysep ACPEeKTEpiHEe HETI3[ICITeH JMArHOCTUKAJBIK IOJAIK OOMBIHIIA MeTa-
aHaJu3 XKYPrizy.

Marepuanaap MeH aicrep. XKyiieni mony PRISMA nyckaymapbeiHa COWKeEC KYpri3iiii.
Oneobuertepai i3ney PubMed, Scopus xone Web of Science nepekkopmapeiama «cyT 0e3i
KaTepil iciri», <«KacaHIbl WHTEIUICKT», «MAIIMHAIBIK OKBITY» JKOHE «TEPEH OKBITY»
TaKbIPBINITAPBIH KAMTUTBIH KiNT ce3nep MeH MeSH TtepmuHaepiHiH KOMOWHaIMsIapbIH
naianaHa OTBIPBII JKY3€Te achlpblIAbl. MeTa-aHamu3re ce3iMTalabIK, epekenik xone ROC
KUCBIFBI acThiHAarel ayfaH (AUC) kepcerkimTepiH maimanana oteipsin, KU omicrepinin
JTUAarHOCTHKAJIBIK JONIITIH Oaranaran 24 3epTrTey eHrizuimi. JlepeKTepaiH CTaTHCTHKAJIBIK
Tanmaybl Ke3JCHCOK ocepiep MOMACIIH MalJaJlaHbIN KYPTi3uial, ajl 3epTTeYJIep/IiH carmachl
QUADAS-2 kypaJibl apKbUIbl OaFaiaHIbl.

Hoatukenep. KU omicrepi yimrin AUC monaepinia quana3onsl 0.80-gen 0.96-ra neitin
0017161, OYJT OJIAPIBIH YKOFAPBI TMArHOCTUKAJIBIK IQJIITiH KopceTei. EH )korapbl KepceTKimTep
McKinney xane 1.6. (2020) (AUC = 0.95, 95% CJI: 0.92-0.98) xone Ribli xone 1.6. (2018)
(AUC = 0.95, 95% C[: 0.93-0.98) 3eprreynepinae kepcerinai. Helipounsix xeminep (CNN)
OapibIK oNiCTep apachlHAA €H JKOFapbl JANIIKTI KOpCeTTi. 3epTreysiep apachlHAAFrbl
JNEPEeKTEepAiH TeTEepPOreH TN alTapibIKTail OoibIl, Oyl Ce3IMTANOBIK TalAayblH >KOHE
TeTepPOreHIUTIKTIH KO3/IepiH aHBIKTAy YIIIH METaperpecCHsUIbIK Tallay/bl JKYpri3yai Tanar
eTTi.

KopsiTbinabl. KU omictepi cyT 6e31 Karepii icirid AHarHoCcTUKAay/ia YIKSH dJIeyeTKe
ue, oJ1ap KOFaphl CE3IMTANIBIK TICH epeKIICTiKTI kopcereni. [lereHMeH, Ooamak 3epTreyiep
HOTIWDKENIEP/IIH ~ KAWTaTaHBIMABUIBIFBIH  JKaKCapTyFa, TOCUIAEpIl CTaHAapTTayFa IKOHE
ITOPUTMEPAIH MEAULMHANIBIK TOKIpUOeae Kayirci3 opi THIM/I KOJIAAHBUTYbIH KaMTaMachl3
€Ty YILIH OJIapJIbIH alIbIKTBIFbIH apTThIPyFa OaFbITTATYhI THIC.

Tyiinai ce3aep: cyT 0e3i Karepi iciri, >kacaHbl HHTEIUIEKT, TEPEH OKBITY, CBEPTOUTHIK
HEHPOH/IBIK JKEJIep, TUArHOCTUKAIIBIK JJIK, METa-aHAIN3, MAITHHAIBIK OKBITY.

INPUMEHEHHUE METOJ10OB HCKYCCTBEHHOI'O MHTEJ/UIEKTA B
JUATHOCTHUKE PAKA MOJIOYHOM KEJIE3bl: CUACTEMATUYECKHNUHU
OB30P U META-AHAJIN3

A.B. IIIEPTAEBA ', .A. OCITAHOBA 2, . A. JISIJIbKOBA 3,
C.J1. YAJIUEB “, T1.A. EJISICUH °, A. K. ABJPAXMAHOBA °,
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AHHOTaNuA

Beenenue. Pak MOnOYHOM Keie3bl ABISIETCS OJHOW M3 BEAYIIUX IPUYUH CMEPTHOCTH
CpeIu KEHIIWH 10 BCEMY MHUPY, U €ro paHHAS JWAarHOCTUKAa WIpaeT PEHIaloIlyl poJib B
YIIYYIICHUN KIMHUYECKUX UCXOJ0B U CHHXKEHUH CMEPTHOCTH.

Ouenuth 3pGEeKTUBHOCTh IPUMEHEHHUsI METO/I0B UCKyccTBeHHOro uHreiuiekra (M) B
JMArHOCTHKE paKka MOJIOYHOM 5K€JI€3bl ¥ IPOBECTU METAAHAIN3 JUArHOCTUYECKON TOYHOCTH Ha
OCHOBE JIaHHBIX M3 HECKOJbKHX HUCCIEA0BaHMM, ormyoaukoBaHHbIX ¢ 2010 mo 2023 ropbr.

Marepuanbl u MeToabl. CucTeMaTuyeckuii 0030p ObLT MPOBEIEH B COOTBETCTBUU C
pykoBoasiimumu npuHnunamMu PRISMA. Tlouck nuteparypsl ocymecTBisicsa B 0a3ax TaHHBIX
PubMed, Scopus u Web of Science, ¢ ucmoib30BaHHEeM KOMOWHAIUI KIIOUYEBBIX CIIOB U
TepMuHOB MeSH, oXxBaThIBalOIIMX TEMBI «pPAK MOJOYHOM JKEJIE3bl», «HUCKYCCTBEHHBII
MHTEIJIEKT», «MAIIMHHOE 00yueHue» U «ri1ybokoe oOydeHuey». B Mmetaananus ObUIM BKIFOUEHBI
24 wuccrnenoBaHMs, OICHHBAIONIME JTUATCHOCTUYECKYI0 TOYHOCTH MerogoB UMW ¢
UCIIOJIb30BaHUEM II0Ka3aTesiell YyBCTBUTEIbHOCTH, celu@uuHocTy U miomaau noa ROC-
kpuBoil (AUC). CraTucTUYecKUi aHalW3 JaHHBIX MPOBOJWICA C HCIOIb30BAaHHEM MOJAEIH
cirydaitHbIX 3 (EKTOB, a Ka4yeCTBO HCCIICOBAHUI OIICHWBAJIOCH C TIOMOIIBI0 HHCTPYMEHTA
QUADAS-2.

PesyabTaTsl. [lunanason 3nauenuit AUC g metonos MU cocraBuin ot 0.80 110 0.96, uto
CBUJICTENLCTBYET O BBICOKOW JUArHOCTHYECKON TouHOCTH. Hambosee BbICOKHE MOKa3aTenn
ObUTH TPOJIEMOHCTPHPOBAHKI B uccnenoBanmsx McKinney et al. (2020) (AUC = 0.95, 95% JAU:
0.92-0.98) u Ribli et al. (2018) (AUC = 0.95, 95% [U: 0.93—0.98). CBepTouHble HEUPOHHbBIE
cetu (CNN) nokasajiy HauBBICIITYIO TOYHOCTh CPEU BCEX METOOB. | €TepOreHHOCTh JIaHHBIX
MEXJYy HCCIEIOBaHUAMH OblJla 3HAYUTENBHOW, uYTO TpeOoBasl0 MPOBEIACHHS aHAINU3a
YYBCTBUTEJIBHOCTHU M METAPErPECCMOHHOIO aHajiu3a JUIsl BbIABICHHUS HCTOYHUKOB
TETEPOr€HHOCTH.

3akarouenue. Metozns! MM umeroT BbICOKUI MOTEHIMAN B TUAaTHOCTUKE paka MOJIOYHOM
JKeNe3bl, JEMOHCTPUPYS BBICOKYK) UYYBCTBUTEIBHOCTh U coenuduuHoctb. OgHAKO
JAIbHEWIINE UCCIIEJOBAHMS JIOJKHBI OBITh HAIllpaBJIEHBl Ha YJIy4IIEHHE PENpOIyKTUBHOCTH
pEe3yNbTaTOB, CTAHIAPTU3ALMIO MTOAXOA0B M MOBBILIEHUE MPO3PAUYHOCTH AITOPUTMOB JJIsl UX
6e30macHOro 1 3(pPEeKTUBHOrO MPUMEHEHHS B METUIIUTHCKOM MPaKTUKE.

KiioueBble ciioBa: pak MOJOYHOW >KeNe3bl, UCKYCCTBEHHBIH WHTEIIIEKT, TIyOOKOe
oOydeHue, CBEpPTOYHbIE HEWPOHHbBIE CETH, JAWAarHOCTUYECKass TOYHOCTb, METaaHaJIM3,
MAaIIMHHOE O0y4YeHHE.
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